Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; 12(4): e0361823, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38385741

RESUMO

Toxoplasma gondii is a highly prevalent pathogen causing zoonotic infections with significant public health implications. Yet, our understanding of long-term consequences, associated risk factors, and the potential role of co-infections is still limited. Seroepidemiological studies are a valuable approach to address open questions and enhance our insights into T. gondii across human populations. Here, we present substantial advancements to our previously developed T. gondii multiplex serology assay, which is based on the immunodominant antigens SAG1 and P22. While our previous bead-based assay quantified antibody levels against multiple targets in a high-throughput fashion requiring only a small sample volume, impaired assay characteristics emerged in sample dilutions beyond 1:100 and when being transferred to magnetic beads. Both are now critical for inclusion in large-scale seroprevalence studies. Using the truncated versions, SAG1D1 and P22trunc, significantly enhanced signal-to-noise ratios were achieved with almost perfect concordance with the gold-standard Sabin-Feldman dye test. In sample dilutions of 1:100, the diagnostic accuracy of SAG1D1 and P22trunc reached sensitivities (true positive rates) of 98% and 94% and specificities (true negative rates) of 93% and 95%, respectively. Importantly, performance metrics were reproducible in a 1:1,000 sample dilution, using both magnetic and nonmagnetic beads. Thresholds for seropositivity were derived from finite mixture models and performed equally well as thresholds by receiver operating characteristic analysis. Our improved multiplex serology assay is therefore able to generate robust and reproducible performance metrics under various assay conditions. Inclusion of T. gondii antibody measurements with other pathogens, in multiplex serology panels will allow for large-scale seroepidemiological research. IMPORTANCE: Toxoplasma gondii is a pathogen of significant public health concern due to its widespread prevalence and zoonotic potential. However, our understanding of key aspects, such as risk factors for infection and disease, potential outcomes, and their trends, remains limited. Seroepidemiological studies in large cohorts are invaluable for addressing these questions but remain scarce. Our revised multiplex serology assay equips researchers with a powerful tool capable of delivering T. gondii serum antibody measurements with high sensitivity and specificity under diverse assay conditions. This advancement paves the way for the integration of T. gondii antibody measurements into multi-pathogen multiplex serology panels, promising valuable insights into public health and pathogen interactions.


Assuntos
Toxoplasma , Humanos , Ensaio de Imunoadsorção Enzimática , Estudos Soroepidemiológicos , Testes Sorológicos , Curva ROC
2.
Viruses ; 15(2)2023 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-36851768

RESUMO

Nipah virus (NiV) is an emerging zoonotic paramyxovirus that causes fatal infections in humans. As with most disease-causing viruses, the pathogenic potential of NiV is linked to its ability to block antiviral responses, e.g., by antagonizing IFN signaling through blocking STAT proteins. One of the STAT1/2-binding proteins of NiV is the phosphoprotein (P), but its functional role in IFN antagonism in a full viral context is not well defined. As NiV P is required for genome replication and specifically accumulates in cytosolic inclusion bodies (IBs) of infected cells, we hypothesized that this compartmentalization might play a role in P-mediated IFN antagonism. Supporting this notion, we show here that NiV can inhibit IFN-dependent antiviral signaling via a NiV P-dependent sequestration of STAT1 and STAT2 into viral IBs. Consequently, the phosphorylation/activation and nuclear translocation of STAT proteins in response to IFN is limited, as indicated by the lack of nuclear pSTAT in NiV-infected cells. Blocking autocrine IFN signaling by sequestering STAT proteins in IBs is a not yet described mechanism by which NiV could block antiviral gene expression and provides the first evidence that cytosolic NiV IBs may play a functional role in IFN antagonism.


Assuntos
Corpos de Inclusão Viral , Vírus Nipah , Humanos , Antivirais , Citosol , Interferons/metabolismo , Fator de Transcrição STAT1 , Fator de Transcrição STAT2
3.
Viruses ; 13(8)2021 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-34452363

RESUMO

Despite the recent availability of vaccines against severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), there is an urgent need for specific anti-SARS-CoV-2 drugs. Monoclonal neutralizing antibodies are an important drug class in the global fight against the SARS-CoV-2 pandemic due to their ability to convey immediate protection and their potential to be used as both prophylactic and therapeutic drugs. Clinically used neutralizing antibodies against respiratory viruses are currently injected intravenously, which can lead to suboptimal pulmonary bioavailability and thus to a lower effectiveness. Here we describe DZIF-10c, a fully human monoclonal neutralizing antibody that binds the receptor-binding domain of the SARS-CoV-2 spike protein. DZIF-10c displays an exceptionally high neutralizing potency against SARS-CoV-2, retains full activity against the variant of concern (VOC) B.1.1.7 and still neutralizes the VOC B.1.351, although with reduced potency. Importantly, not only systemic but also intranasal application of DZIF-10c abolished the presence of infectious particles in the lungs of SARS-CoV-2 infected mice and mitigated lung pathology when administered prophylactically. Along with a favorable pharmacokinetic profile, these results highlight DZIF-10c as a novel human SARS-CoV-2 neutralizing antibody with high in vitro and in vivo antiviral potency. The successful intranasal application of DZIF-10c paves the way for clinical trials investigating topical delivery of anti-SARS-CoV-2 antibodies.


Assuntos
Anticorpos Monoclonais/administração & dosagem , Anticorpos Neutralizantes/administração & dosagem , Anticorpos Antivirais/administração & dosagem , COVID-19/prevenção & controle , SARS-CoV-2/imunologia , Administração Intranasal , Animais , COVID-19/virologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/imunologia
4.
PLoS Pathog ; 15(4): e1007733, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-31034506

RESUMO

Formation of cytoplasmic inclusion bodies (IBs) is a hallmark of infections with non-segmented negative-strand RNA viruses (order Mononegavirales). We show here that Nipah virus (NiV), a bat-derived highly pathogenic member of the Paramyxoviridae family, differs from mononegaviruses of the Rhabdo-, Filo- and Pneumoviridae families by forming two types of IBs with distinct localizations, formation kinetics, and protein compositions. IBs in the perinuclear region form rapidly upon expression of the nucleocapsid proteins. These IBperi are highly mobile and associate with the aggresome marker y-tubulin. IBperi can recruit unrelated overexpressed cytosolic proteins but do not contain the viral matrix (M) protein. Additionally, NiV forms an as yet undescribed IB population at the plasma membrane (IBPM) that is y-tubulin-negative but contains the M protein. Infection studies with recombinant NiV revealed that IBPM require the M protein for their formation, and most likely represent sites of NiV assembly and budding. The identification of this novel type of plasma membrane-associated IBs not only provides new insights into NiV biology and may open new avenues to develop novel antiviral approaches to treat these highly pathogenic viruses, it also provides a basis for a more detailed characterization of IBs and their role in virus assembly and replication in infections with other Mononegavirales.


Assuntos
Membrana Celular/virologia , Infecções por Henipavirus/virologia , Corpos de Inclusão Viral/virologia , Vírus Nipah/patogenicidade , Proteínas da Matriz Viral/metabolismo , Animais , Chlorocebus aethiops , Glicoproteínas/metabolismo , Infecções por Henipavirus/metabolismo , Infecções por Henipavirus/patologia , Humanos , Corpos de Inclusão Viral/metabolismo , Corpos de Inclusão Viral/patologia , Células Vero , Montagem de Vírus , Internalização do Vírus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...